against $\mu_{3}-\mathrm{P}, \mu_{3}-\mathrm{Cl}$ and $\mu_{3}-\mathrm{I}$ atoms, which is accompanied by a conversion of 44 VE to 46 VE cluster species, reveals $\mathrm{Re}-\mathrm{Re}$ bond elongation in the 46 VE species of about 0.053 (1) -0.094 (1) \AA. The electronic structure of the $\mu_{3}-X$ ligands seems to be a factor of greater influence than the atomic size of X, because in the series of substances of type $\mathrm{Re}_{3}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{H}\right)\left(\mu_{3}-X\right)\left(\mu-\mathrm{PPh}_{2}\right)_{3} \quad[X: \quad \mathrm{Cl}>\mathrm{Br}>\mathrm{I}$, $\operatorname{Re}-\operatorname{Re} 2 \cdot 808(1)>2.809(2)>2 \cdot 820$ (1) \AA], such a steric factor can almost be neglected. In general, the rather rigid phosphido-bridged $\mathrm{Re}-\mathrm{Re}$ triangles do not show extensive geometrical changes.

References

Flörke, U. \& Haupt, H.-J. (1990). Z. Kristallogr. 191, 291-294.
Haupt, H.-J., Flörke, U. \& Balsaa, P. (1988a). Acta Cryst. C44, 61-63.
Haupt, H.-J., Flörke, U. \& Balsaa, P. (1988b). Angew. Chem. Int. Ed. Engl. 27, 263-264.
Haupt, H.-J., Flörke, U. \& Balsaa, P. (1988c). Inorg. Chem. 27, 280-286.
haupt, H.-J., Woyciechowski, M. \& Flörke, U. (1991). Z. Anorg. Allg. Chem. 592, 153-170.
Lauher, J. W. (1978). J. Am. Chem. Soc. 100, 5305-5315.
Sheldrick, G. M. (1988). SHELX-Plus88. Structure Determination Software Programs. Nicolet Instrument Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1991). C47, 2535-2539

Structure of trans-Aquanitrido(1,4,8,11-tetraazacyclotetradecan-5-onato$\left.N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}\right)$ technetium(V) Chloride Dihydrate

By Valerio Bertolasi,* Valeria Ferretti and Paola Gilli
Dipartimento di Chimica e Centro di Strutturistica Diffrattometrica, Università di Ferrara, 44100 Ferrara, Italy

and Andrea Marchi and Lorenza Marvelli
Laboratorio di Chimica Nucleare ed Inorganica, Dipartimento di Chimica, Università di Ferrara, 44100 Ferrara, Italy
(Received 19 January 1991; accepted 3 June 1991)

Abstract

TcN}\left(\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+} . \mathrm{Cl}^{-} .2 \mathrm{H}_{2} \mathrm{O}, M_{r}\) $=415.81$, monoclinic, $P 2_{1} / c, \quad a=7.609$ (1), $\quad b=$ 16.405 (3), $\quad c=13.642$ (3) $\AA, \quad \beta=99.57$ (1) $)^{\circ}, \quad V=$ 1679.2 (5) $\AA^{3}, Z=4, D_{x}=1.64 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ (Мо $K \alpha$) $=0.71069 \AA, \mu=1.018 \mathrm{~mm}^{-1}, \quad F(000)=856, \quad T=$ $298 \mathrm{~K}, R=0.021$ for 3262 observed reflections. The complex cation displays a distorted octahedral structure, with a water molecule in the trans position with respect to the $\mathrm{Tc} \equiv \mathrm{N}$ group and the four N atoms of the ligand in the equatorial position. The degree of pyramidalization of the coordination polyhedron is important [average $\mathrm{N} \equiv \mathrm{Tc}-\mathrm{N}$ angle of 101 (3) ${ }^{\circ}$] and the $\mathrm{Tc}-\mathrm{OH}_{2}$ bond distance is abnormally long $(2 \cdot 560 \AA)$, as a consequence of the strong trans influence exerted by the nitrido group. These facts are consistent with an incipient transition from a square pyramidal to octahedral geometry of the coordination polyhedron caused by the incoming water molecule.

Introduction. The application of complexes of metastable technetium- $99 m$ in diagnostic nuclear medicine

[^0]0108-2701/91/122535-05\$03.00
has stimulated a major development of technetium chemistry.

The chemistry of technetium (V) is largely dominated by $[\mathrm{Tc} \equiv \mathrm{O}]^{3+}$ and trans-dioxo $[\mathrm{O}=\mathrm{Tc}=\mathrm{O}]^{+}$ cores. Throughout this paper the form $[\mathrm{Tc} \equiv \mathrm{O}]^{3+}$ is used to describe the Tc-oxo multiple bond according to the well known bond situation in oxo complexes where the $M-\mathrm{O}$ bond has three components (one σ and two π), out of which two are covalent and one is donor-acceptor ($\mathrm{Tc} \leftrightarrows \mathrm{O}$) (Shustorovich, Porai-Koshits \& Buslaev, 1975). This formalism is useful to distinguish the bond situation in oxo $[\mathrm{Tc} \equiv \mathrm{O}]^{3+}$ complexes, where $\mathrm{Tc}-\mathrm{O}$ distances fall in the range $1.61-1.68 \AA$ with stretching frequencies in the range $920-1020 \mathrm{~cm}^{-1}$, from that in dioxo $[\mathrm{O}=\mathrm{Tc}=\mathrm{O}]^{+}$complexes where the distances and stretching frequencies occur in the ranges 1.74 $1.75 \AA$ and $790-880 \mathrm{~cm}^{-1}$ respectively (Zuckman, Freeman, Troutner, Volkert, Holmes, Van Derveer \& Kent Barefield, 1981; Kastner, Lindsay \& Clarke, 1982; Jurisson, Aston, Fair, Schlemper, Sharp \& Troutner, 1987).

Lipophilic square-pyramidal complexes containing the $[\mathrm{TC} \equiv \mathrm{O}]^{3+}$ moiety as $[\mathrm{TcO}(L)]$ ($L=$ diamino-
dithiolates, amino-oxime ligands) (Bryson, Dewan, Lister-James, Jones \& Davison, 1988; Jurisson et al., 1987; Jurisson, Schlemper, Troutner, Canning, Nowotnik \& Neirinckx, 1986) can cross the blood barrier and this fact seems to indicate that the formation of a square-pyramidal structure containing an apical $\mathrm{Tc} X$ group ($X=\mathrm{O}, \mathrm{N}$) is a favourable feature for obtaining potential radiopharmaceutical agents for brain imaging. On the other hand it is well known that technetium(V) tends to form dioxooctahedral complexes with neutral or poor π-donor ligands such as in $\left[\mathrm{TcO}_{2}(\mathrm{en})_{2}\right]^{+}$(en $=$ethylendiamine) and $\left[\mathrm{TcO}_{2} \text { (cyclam) }\right]^{+}$(Kastner et al., 1982; Zuckman et al., 1981).

Baldas and coworkers (Baldas, Bonnyman \& Williams, 1986; Baldas, Bass, Bonnyman \& Williams, 1984; Baldas \& Bonnyman, 1985) have proposed, as an alternative to the $\left[\mathrm{TcO}_{2}\right]^{+}$and $[\mathrm{Tc} \equiv \mathrm{O}]^{3+}$ groups, the $[\mathrm{Tc} \equiv \mathrm{N}]^{2+}$ core which is isoelectronic with $[\mathrm{Tc} \equiv \mathrm{O}]^{3+}$ and, furthermore, has the property that the nitrido ligand N^{3-} tends to stabilize the metal in high oxidation states (Griffith, 1972). Thenceforward, new technetium nitrido complexes which could be potential radiopharmaceutical agents have been characterized and investigated. Lipophilic square-pyramidal complexes with bi- and tridentate Schiff bases derived from S-methyl dithiocarbazate $\mathrm{NH}_{2} \mathrm{NHC}(=\mathrm{S}) \mathrm{SCH}_{3}$ and containing the $[\mathrm{Tc} \equiv \mathrm{N}]^{2+}$ and $[\mathrm{Tc} \equiv \mathrm{O}]^{3+}$ moieties were synthesized as potential tracers for brain imaging (Marchi, Duatti, Rossi, Magon, Pasqualini, Bertolasi, Ferretti \& Gilli, 1988; Marchi, Rossi, Magon, Duatti, Pasqualini, Ferretti \& Bertolasi, 1990). Moreover, a number of monocationic complexes of technetium in low oxidation states, such as $\left[\mathrm{Tc}(\mathrm{CN} R)_{6}\right]^{+}(\mathrm{CN} R=$ alkyl or aryl isonitriles), were synthesized (Abrams, Davison, Jones, Costello \& Pang, 1983) in order to obtain new ${ }^{99 m} \mathrm{Tc}$ myocardial agents.

Recently, we have reported the synthesis and crystal structure of monocationic octahedral nitrido complexes of technetium(V) with nitrogen-donor ligands such as chelating amines (Marchi, Garuti, Duatti, Magon, Rossi, Ferretti \& Bertolasi, 1990) and tetraaza macrocycles (Marchi, Rossi, Magon, Duatti, Casellato, Graziani, Vidal \& Riche, 1990). The strong demand for decreasing the positive charge on the $[\mathrm{Tc} \equiv \mathrm{N}]^{2+}$ core has promoted the synthesis of monocationic complexes containing a Cl^{-}ion in a trans position to the $\mathrm{Tc} \equiv \mathrm{N}$ group where chelating amines and cyclam were used. With the mono-oxocyclam ligand (1,4,8,11-tetraaza-cyclotetradecan-5-one) a monocationic octahedral complex is also obtained through deprotonation of an amide group and coordination of an $\mathrm{H}_{2} \mathrm{O}$ molecule in a trans position to the $\mathrm{T} \equiv \mathrm{N}$ multiple bond, and this structure is the object of the present investigation.

Experimental. Orange prismatic crystal of dimensions $0.24 \times 0.26 \times 0.50 \mathrm{~mm}$; Enraf-Nonius CAD-4 diffractometer, graphite-monochromated Mo K radiation, $\omega / 2 \theta$ scan $\left(2 \leq \theta \leq 27^{\circ}\right)$; cell parameters from 25 reflections in the range $9 \leq \theta \leq 15^{\circ} ; 3655$ reflections collected ($0 \leq h \leq 9,0 \leq k \leq 20,-17 \leq l$ $\leq 17)$, 3262 with $I_{o} \geq 3 \sigma\left(I_{o}\right)$ used in the refinement; three standard reflections monitored every 2 h showed no significant variation during data collection; Lorentz, polarization and absorption corrections (minimum transmission factor $=0.92$). Solution by Patterson and Fourier methods, refinement by full-matrix least squares, anisotropic non-H and isotropic H atoms (located in ΔF map), final $R=0.021$, $w R=0 \cdot 030$, weighting scheme $w=4 F_{o}^{2} /\left[\sigma^{2}\left(F_{o}\right)^{2}+\right.$ $\left.\left(0.04 F_{o}^{2}\right)^{2}\right]$; maximum $\Delta / \sigma=0.05, S=1.200$; final difference-map peaks in the range $-0.3-0.55 \mathrm{e}^{-3}$. Scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV); all calculations performed with CAD-4-SDP system of programs (Frenz, 1978) and PARST (Nardelli, 1983).

Discussion. Final atomic positional and thermal parameters are given in Table 1, bond distances and angles are reported in Table 2 and an ORTEPII (Johnson, 1976) view of the asymmetric unit is shown in Fig. 1.*

The crystal consists of $\left[\mathrm{TcN}\left(\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$ cations and Cl^{-}anions packed together with water molecules by means of a three-dimensional net of hydrogen bonds. The octahedral coordination around the central Tc atom places the four N atoms of the macrocycle in the equatorial plane and the nitrido N atom and the $\mathrm{O}(1 w)$ atom of a water molecule at the apical positions. The Tc atom is displaced from the least-squares plane defined by the four N basal atoms by 0.3981 (4) \AA towards the nitrido group.

The bonding situation in this octahedral Tc nitrido complex can be described using the general scheme already reported for the mononuclear nitrido complexes (Griffith, 1972). If the nitride is placed on the vertical z axis and the equatorial ligands are on the x, y axes, the $\mathrm{Tc} \equiv \mathrm{N}$ overlaps will be: $\mathrm{N}-\mathrm{Tc}$ (σ bond) $s p_{\sigma}$ to $4 d_{z^{2}}+5 s ; \mathrm{N}=\mathrm{Tc}$ (π bonds) $2 p_{x}$ to $4 d_{x z}$ and $2 p_{y}$ to $4 d_{y z}$. For the four basal σ bonds, the overlaps would be between the N lone pairs and the $\left(5 s-4 d_{x^{2}}\right), 5 p_{x}, 5 p_{y}$ and $4 d_{x^{2}-y^{2}}$ Tc orbitals and for the trans $\mathrm{Tc}-\mathrm{O} \boldsymbol{\sigma}$ bond the interaction would be between an O lone pair and the $5 p_{z} \mathrm{Tc}$ orbital. Tc^{V} complexes are diamagnetic and thus in a d^{2} closed-

[^1]Table 1. Atomic positional parameters $\left(\times 10^{4}\right)$ and thermal parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

Table 2. Bond lengths (\AA) and bond angles (${ }^{\circ}$) with e.s.d.'s in parentheses

$\mathrm{Tc}-\mathrm{N}(1)$	1.614 (2)	$\mathrm{N}(4)-\mathrm{C}(5)$	1.482 (2)
$\mathrm{Tc}-\mathrm{N}(2)$	2.046 (1)	$\mathrm{N}(4)-\mathrm{C}(6)$	1.490 (2)
$\mathrm{Tc}-\mathrm{N}(3)$	$2 \cdot 109$ (1)	$\mathrm{N}(5)-\mathrm{C}(7)$	1.496 (2)
$\mathrm{Tc}-\mathrm{N}(4)$	2.130 (1)	$\mathrm{N}(5)-\mathrm{C}(8)$	1.482 (2)
$\mathrm{Tc}-\mathrm{N}(5)$	2.133 (2)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.524 (2)
$\mathrm{Tc}-\mathrm{O}\left(1 w^{\prime}\right)$	$2 \cdot 560$ (2)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.518 (2)
$\mathrm{O}(1)-\mathrm{C}(10)$	1.259 (2)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.520 (2)
$\mathrm{N}(2)-\mathrm{C}(1)$	1.479 (2)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.516 (3)
$\mathrm{N}(2)-\mathrm{C}(10)$	1.320 (2)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.523 (2)
$\mathrm{N}(3)-\mathrm{C}(2)$	1.483 (2)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.524 (3)
$\mathrm{N}(3)-\mathrm{C}(3)$	1.491 (2)		
$\mathrm{N}(1)-\mathrm{Tc}-\mathrm{N}(2)$	105.45 (7)	$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(3)$	$115 \cdot 3$ (1)
$\mathrm{N}(1)-\mathrm{Tc}-\mathrm{N}(3)$	98.97 (7)	$\mathrm{Tc}-\mathrm{N}(4)-\mathrm{C}(5)$	113.0 (1)
$\mathrm{N}(1)-\mathrm{Tc}-\mathrm{N}(4)$	99.71 (7)	$\mathrm{Tc}-\mathrm{N}(4)-\mathrm{C}(6)$	$106 \cdot 1$ (1)
$\mathrm{N}(1)-\mathrm{Tc}-\mathrm{N}(5)$	99.58 (7)	$\mathrm{C}(5)-\mathrm{N}(4)-\mathrm{C}(6)$	116.1 (1)
$\mathrm{N}(1)-\mathrm{Tc}-\mathrm{O}(1 w)$	175.73 (6)	$\mathrm{Tc}-\mathrm{N}(5)-\mathrm{C}(7)$	108.2 (1)
$\mathrm{N}(2)-\mathrm{Tc}-\mathrm{N}(3)$	80.75 (6)	$\mathrm{Tc}-\mathrm{N}(5)-\mathrm{C}(8)$	113.4 (1)
$\mathrm{N}(2)-\mathrm{Tc}-\mathrm{N}(4)$	154.70 (6)	$\mathrm{C}(7)-\mathrm{N}(5)-\mathrm{C}(8)$	114.2 (1)
$\mathrm{N}(2)-\mathrm{Tc}-\mathrm{N}(5)$	$95 \cdot 82$ (6)	$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$109 \cdot 1$ (1)
$\mathrm{N}(2)-\mathrm{Tc}-\mathrm{O}(1 w)$	78.42 (5)	$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	108.6 (1)
$\mathrm{N}(3)-\mathrm{Tc}-\mathrm{N}(4)$	92.91 (6)	$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	112.6 (1)
$\mathrm{N}(3)-\mathrm{Tc}-\mathrm{N}(5)$	161.38 (6)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.5 (1)
$\mathrm{N}(3)-\mathrm{Tc}-\mathrm{O}(1 w)$	79.73 (5)	$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(4)$	111.8 (2)
$\mathrm{N}(4)-\mathrm{Tc}-\mathrm{N}(5)$	82.38 (6)	$\mathrm{N}(4)-\mathrm{C}(6)-\mathrm{C}(7)$	107.6 (1)
$\mathrm{N}(4)-\mathrm{Tc}-\mathrm{O}\left(1 w^{\prime}\right)$	76.35 (6)	$\mathrm{N}(5)-\mathrm{C}(7)-\mathrm{C}(6)$	109.7 (1)
$\mathrm{N}(5)-\mathrm{Tc}-\mathrm{O}(1 w)$	81.65 (5)	$\mathrm{N}(5)-\mathrm{C}(8)-\mathrm{C}(9)$	111.8 (1)
$\mathrm{Tc}-\mathrm{N}(2)-\mathrm{C}(1)$	114.3 (1)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120 \cdot 1$ (1)
$\mathrm{Tc}-\mathrm{N}(2)-\mathrm{C}(10)$	$127 \cdot 3$ (1)	$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	119.0 (1)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(10)$	118.1 (1)	$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	117.6 (1)
$\mathrm{Tc}-\mathrm{N}(3)-\mathrm{C}(2)$	$105 \cdot 7$ (1)	$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{N}(2)$	123.4 (2)
$\mathrm{Tc}-\mathrm{N}(3)-\mathrm{C}(3)$	113.2 (1)		

shell configuration; the π nitrido-ligand bonds destabilize the $d_{y z}$ and $d_{x z}$ orbitals so that the two paired d electrons of Tc^{\vee} are on the $d_{x y}$ orbital. In the bonding scheme, described above, there is competition between the nitrido group and the ligand in the trans position for the same σ and π orbitals on the metal
and consequently, since the $\mathrm{Tc} \equiv \mathrm{N}$ bond is very strong, the ligand in the trans position is either weakly coordinated or, more frequently, absent entirely. Accordingly, the $\mathrm{Tc} \equiv \mathrm{N}$ (nitrido) complexes, owing to the very strong trans influence of the N^{3-} group, are mainly characterized by a square pyramidal Tc^{\vee} penta-coordination (Marchi et al., 1988, and references therein). However, some structures of Tc^{\vee} nitrido complexes with an unusual pseudo-octahedral geometry have recently been reported, i.e. $\mathrm{Tc}(\mathrm{NCS})_{2}(\mathrm{MeCN})\left(\mathrm{PPh}_{3}\right)_{2}$ (Baldas, Bonnyman \& Williams, 1984), [Tcn(bpy) $\left.{ }_{2} \mathrm{Br}\right]^{+}$(bpy $=2,2^{\prime}$-bipyridyl) (Archer, Dilworth, Kelly \& McPartlin, 1989), $\left[\mathrm{TcN}(\mathrm{en})_{2} \mathrm{Cl}\right]^{+}$(en = ethylenedia$\operatorname{mine}) \quad$ and $\quad[\mathrm{TcN}(\operatorname{tad}) \mathrm{Cl}]^{+} \quad(\operatorname{tad}=1,5,8,12-$ tetraazadodecane) (Marchi, Garuti et al., 1990); $\mathrm{TcN}\left(L^{\prime}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) \quad\left(\mathrm{H}_{2} L^{\prime}=1,4,8,11\right.$-tetraazacy-clotetradecane-5,7-dione) (Marchi, Rossi et al., 1990). The present compound displays what can be called a pseudo-octahedral Tc^{\vee} coordination which is characterized by the very short $\mathrm{Tc} \equiv \mathrm{N}$ distance [1.614 (2) \AA A], the umbrella deformation of the octahedron $\left[\mathrm{N} \equiv \mathrm{Tc}-\mathrm{N}\right.$ (cis) angle $=101(3)^{\circ}$, on average] and the long $\mathrm{Tc}-\mathrm{O}$ (trans) bond distances [$2 \cdot 560(2) \AA]$ which are a consequence of the trans weakening caused by the multiple $\mathrm{Tc} \equiv \mathrm{N}$ bond. Experimental data are in agreement with the idea that the trans influence exerted by the $\mathrm{Tc} \equiv \mathrm{N}$ multiple bond must be much greater than that exerted by the isoelectronic $\mathrm{Tc} \equiv \mathrm{O}$ group (Shustorovich et al., 1975; Marchi, Garuti et al., 1990). The present Tc-O (trans) bond distance of 2.560 (2) \AA is much longer than the corresponding $\mathrm{Tc}-\mathrm{O}$ distances observed in bonds trans to the $\mathrm{Tc} \equiv \mathrm{O}$ multiple bonds in Tc^{\vee} octahedral oxo complexes; in particular, it is longer than that of $2 \cdot 282$ (2) \AA with a trans water molecule (Jurisson, Lindoy, Dancey, McPartlin, Tasker, Uppal \& Deutsch, 1984) and that of

Fig. 1. An ORTEP (Johnson, 1976) view of the asymmetric unit displaying the thermal ellipsoids at 40% probability.
$\left[\mathrm{TcN}\left(\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+} . \mathrm{Cl}^{-} .2 \mathrm{H}_{2} \mathrm{O}$
2.359 (8) \AA formed with the trans ketonic O atom of the salicylaldehydate ligand (Duatti, Marchi, Magon, Deutsch, Bertolasi \& Gilli, 1987). The trans weakening of the $\mathrm{Tc}-\mathrm{OH}_{2}$ bond caused by the nitrido group is still more pronounced in the strictly similar structure of $\quad \mathrm{TcN}\left(L^{\prime}\right) \mathrm{H}_{2} \mathrm{O} \quad\left(\mathrm{H}_{2} L^{\prime}=1,4,8,11-\right.$ tetraazacyclotetradecane-5,7-dione) (Marchi, Rossi et al., 1990) where $\mathrm{Tc}-\mathrm{OH}_{2}$ distances were found to be $2 \cdot 688$ (4) and 2.947 (4) \AA in the two independent molecules of the asymmetric unit. The most interesting feature of these compounds is, therefore, their ability to form a variety of Tc-O bonds which are abnormally long and can be considered as secondary bonds, i.e. intermediate between true bonds and van der Waals contacts. Analysis of the overall coordination geometries shows that the lengthening of the $\mathrm{Tc}-\mathrm{OH}_{2}$ bond is associated with the increasing pyramidalization of the Tc coordination polyhedron, measured by the $\mathrm{N} \equiv \mathrm{Tc}-L_{\text {cis }}$ mean angle, α, which is 101° in the present compound and 104 and 105° in the other related Tc^{\vee} nitrido tetraaza macrocyclic complex (Marchi, Rossi et al., 1990), while in typical square-pyramidal complexes α values fall in the range 105-108 (Marchi et al., 1988; Baldas, Bonnyman, Pojer, Williams \& Mackay, 1981; Baldas et al., 1986). Fig. 2 shows a scatterplot of $\mathrm{Tc}-\mathrm{OH}_{2}$ distances versus α angles, which can be considered to represent, making allowance for the very few data available, the incipient transition from pseudooctahedral to square-pyramidal geometry (and vice versa) of the coordination around the $\operatorname{Tc}(N)^{2+}$ moiety. The dashed line connecting the points on the figure might be considered to map the hypothetical reaction pathway or reaction coordinate (Bürgi \& Dunitz, 1983) of this coordination variation.
$\mathrm{N}(2)-\mathrm{C}(19)$ and $\mathrm{C}(19)-\mathrm{O}(1)$ bond distances of 1.320 (2) and 1.259 (2) \AA clearly indicate that the negative charge of the ligand is delocalized among the atoms of the deprotonated amide fragment $\mathrm{N}(2)-\mathrm{C}(19)-\mathrm{O}(1)$. The $\mathrm{Tc}-\mathrm{N}$ distances with the

Fig. 2. Scatter plot of mean pyramidal angle $\mathrm{N} \equiv \mathrm{T}-\mathrm{N}(c i s), \alpha$, versus trans- OH_{2} bond distances, $d\left(\mathrm{Tc}-\mathrm{OH}_{2}\right)$, for pseudooctahedral $(\mathrm{Tc} \equiv \mathrm{N})^{2+}$ complexes. ' A ' shows the range of α for square-pyramidal complexes for which $d\left(\mathrm{Tc}-\mathrm{OH}_{2}\right)$ is infinite.

Table 3. Puckering parameters

		Conform-		
Ring	$Q(\AA)$	$\varphi\left({ }^{\circ}\right)$	$\theta\left({ }^{\circ}\right)$	ation
$\mathrm{Tc}, \mathrm{N}(2), \mathrm{C}(10), \mathrm{C}(9), \mathrm{C}(8), \mathrm{N}(5)$	$0.511(2)$	$46.5(2)$	$124.6(2)$	${ }^{2} H_{1} / /^{2} E$
$\mathrm{Tc}, \mathrm{N}(4), \mathrm{C}(5), \mathrm{C}(4), \mathrm{C}(3), \mathrm{N}(3)$	$0.635(2)$	$25(5)$	$1.75(1)$	${ }^{1} C_{4}$
$\mathrm{Tc}, \mathrm{N}(3), \mathrm{C}(2), \mathrm{C}(1), \mathrm{N}(2)$	$0.471(2)$	$50.92(2)$		${ }^{3} T_{2}$
$\mathrm{Tc}, \mathrm{N}(5), \mathrm{C}(7), \mathrm{C}(6), \mathrm{N}(4)$	$0.476(2)$	$-74.2(2)$		${ }^{4} E$

Table 4. Hydrogen-bond parameters $\left(\AA,{ }^{\circ}\right)$

Symmetry					
$D-\mathrm{H} \cdots A$	operation	$D \cdots A$	$\mathrm{H} \cdots A$	$D-\mathrm{H}$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}(4)-\mathrm{H}(\mathrm{N} 4) \cdots \mathrm{Cl}$	i	$3.366(2)$	$2.58(4)$	$0.79(2)$	$170(2)$
$\mathrm{N}(3)-\mathrm{H}(\mathrm{N} 3) \cdots \mathrm{Cl}$	ii	$3.310(2)$	$2.54(2)$	$0.84(2)$	$153(1)$
$\mathrm{N}(5)-\mathrm{H}(\mathrm{N} 5) \cdots \mathrm{Cl}$	iii	$3.325(2)$	$2.48(2)$	$0.87(2)$	$162(1)$
$\mathrm{O}(1 w)-\mathrm{H}(12 w) \cdots \mathrm{Cl}$	i	$3.162(1)$	$2.40(3)$	$0.80(3)$	$160(2)$
$\mathrm{O}(3 w)-\mathrm{H}(32 w) \cdots \mathrm{Cl}$	ii	$3.325(2)$	$2.58(2)$	$0.86(2)$	$146(1)$
$\mathrm{O}(2 w)-\mathrm{H}(21 w) \cdots \mathrm{O}(1)$	i	$2.772(2)$	$1.89(2)$	$0.89(2)$	$172(2)$
$\mathrm{O}(2 w)-\mathrm{H}(22 w) \cdots \mathrm{O}(1)$	iv	$2.795(2)$	$2.03(3)$	$0.77(3)$	$178(3)$
$\mathrm{O}(1 w)-\mathrm{H}(11 w) \cdots \mathrm{O}(3 w)$	i	$2.788(2)$	$2.02(2)$	$0.77(2)$	$177(2)$
$\mathrm{O}(3 w)-\mathrm{H}(31 w) \cdots \mathrm{O}(2 w)$	iv	$2.773(2)$	$1.95(3)$	$0.84(3)$	$167(2)$

Symmetry code: (i) x, y, z; (ii) $-x,-y, 1-z$; (iii) $x, \frac{1}{2}-y$, $-\frac{1}{2}+z$; (iv) $-1-x, 1-y,-z$.
macrocyclic N atoms are within the normally observed range. Their differences can be ascribed to the different basicities of the coordinated atoms. The hard Tc^{\vee} cation forms a stronger bond with the negatively charged $\mathrm{N}(2)[\mathrm{Tc}-\mathrm{N}=2.046$ (1) $\AA]$ than with the neutral $\mathrm{N}(3), \mathrm{N}(4)$ and $\mathrm{N}(5)$ atoms $[\mathrm{Tc}-\mathrm{N}$ $=2 \cdot 12(1) \AA$, on average]. In other words, the differences in bond distances can be imputed to the different hybridization around the aminic $s p^{3} \mathrm{~N}$ atoms and around the amidic $s p^{2} \mathrm{~N}(2)$ atom.

The conformation of the macrocycle can be described using puckering coordinates (Cremer \& Pople, 1975). The parameters regarding the rings formed by chelation are reported in Table 3. They show that the consequence of the oxidation at the $\mathrm{C}(10)$ atom is the conformational change of the six-membered ring, containing $\mathrm{C}(10)$ itself, from the characteristic 'chair' to a mixed 'half-chair/envelope', while the conformation of the adjacent fivemembered ring changes from 'envelope' to 'twist'.
The crystal packing is determined by a complex network of hydrogen bonds, see Table 4, involving $\mathrm{O}(1)$ atoms, Cl^{-}anions, the three water molecules and all the aminic H atoms. In most octahedral Tc complexes the Cl^{-}anion is found to occupy the trans postion with respect to the $\mathrm{Tc}-X(X=\mathrm{O}$, $\mathrm{N} R, \mathrm{~N}$) multiple bond instead of a water molecule as is to be expected in view of the greater basicity of the Cl^{-}ion with respect to water. The fact that in the present compound the Cl^{-}anion is not coordinated in a trans position to the $\mathrm{Tc}=\mathrm{N}$ nitrido group is to be imputed to two concomitant causes, the weakening of the trans $\mathrm{Tc}^{\vee}-\mathrm{Cl}^{-}$bond produced by the nitrido N^{3-} group (Shustorovich et al., 1975) and the possibility of crystal segregation of the Cl^{-}anion by
a set of hydrogen bonds between the $\mathrm{N}-\mathrm{H}$ groups of three cation complexes and two water molecules.

References

Abrams, M. J., Davison, A., Jones, A. G., Costello, C. E. \& Pang, H. (1983). Inorg. Chem. 22, 2798-2800.
Archer, C. M., Dilworth, J. R., Kelly, J. D. \& McPartlin, M. (1989). J. Chem. Soc. Chem. Commun. pp. 375-376.

Baldas, J., Bass, J. F., Bonnyman, J. \& Williams, G. A. (1984). J. Chem. Soc. Dalton Trans. pp. 2395-2400.

Baldas, J. \& Bonnyman, J. (1985). Int. J. Appl. Radiat. Isot. 36, 133-139.
Baldas, J., Bonnyman, J., Pojer, P. M., Williams, G. A. \& MaCKay, M. F. (1981). J. Chem. Soc. Dalton Trans. pp. 1798-1801.
Baldas, J., Bonnyman, J. \& Williams, G. A. (1984). J. Chem. Soc. Dalton Trans. pp. 833-837.
Baldas, J., Bonnyman, J. \& Williams, G. A. (1986). Inorg. Chem. 25, 150-153.
Bryson, N., Dewan, J. C., Lister-James, J., Jones, A. G. \& Davison, A. (1988). Inorg. Chem. 27, 2154-2161.
Bürgi, H. B. \& Dunitz, J. D. (1983). Acc. Chem. Res. 16, 153-161.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1356-1358.
Duatti, A., Marchi, A., Magon, L., Deutsch, E., Bertolasi, V. \& Gilli, G. (1987). Inorg. Chem. 26, 2182-2186.
Frenz, B. A. (1978). Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.

Griffith, W. P. (1972). Coord. Chem. Rev. 8, 369-396.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jurisson, S., Aston, K., Fair, C. K., Schlemper, E. O., Sharp, P. R. \& Troutner, D. E. (1987). Inorg. Chem. 26, 35763582.

Jurisson, S., Lindoy, L. F., Dancey, K. P., McPartlin, M., Tasker, P., Uppal, D. K. \& Deutsch, E. (1984). Inorg. Chem. 23, 227-231.
Jurisson, S., Schlemper, D. E., Troutner, D. E., Canning, L. R., Nowotnik, D. P. \& Neirinckx, R. D. (1986). Inorg. Chem. 25, 543-549.
Kastner, M. F., Lindsay, M. J. \& Clarke, M. J. (1982). Inorg. Chem. 21, 2037-2040.
Marchi, A., Duatti, A., Rossi, R., Magon, L., Pasqualini, R., Bertolasi, V., Ferretti, V. \& Gilli, G. (1988). J. Chem. Soc. Dalton Trans. pp. 1743-1749.
Marchi, A., Garuti, P., Duatti, A., Magon, L., Rossi, R., Ferretti, V. \& Bertolasi, V. (1990). Inorg. Chem. 29, 20912096.

Marchi, A., Rossi, R., Magon, L., Duatti, A., Casellato, U., Graziani, R., Vidal, M. \& Riche, F. (1990). J. Chem. Soc. Dalton Trans. pp. 1935-1940.
Marchi, A., Rossi, R., Magon, L., Duatti, A., Pasqualini, R., Ferretti, V. \& Bertolasi, V. (1990). J. Chem. Soc. Dalton Trans. pp. 1411-1416.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Shustorovich, E. M., Porai-Koshits, M. A. \& Buslaev, Yu. A. (1975). Coord. Chem. Rev. 17, 1-98.

Zuckman, S. A., Freeman, G. M., Troutner, D. E., Volkert, W. A., Holmes, R. A., Van Derveer, D. G. \& Kent Barefield, E. (1981). Inorg. Chem. 20, 2386-2389.

Acta Cryst. (1991). C47, 2539-2541

Structure of Bis(1-ethyl-3-p-nitrophenyltriazene 1-oxide)nickel(II)

By Zbigniew Ciunik, Juliusz A. Wolny and Mikolaj F. Rudolf
Institute of Chemistry, University of Wroclaw, 14 Joliot-Curie St, 50-383 Wroclaw, Poland

(Received 18 April 1991; accepted 5 June 1991)

Abstract

C}_{16} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{NiO}_{6}, M_{r}=477 \cdot 08\), monoclinic, $P 2_{1} / c, a=9.200(1), b=8.658$ (1),$c=12.654$ (1) \AA, $\beta=98.82(1)^{\circ}, \quad V=996.0(2) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.591 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{CuK} \alpha)=1.5418 \AA, \quad \quad \mu=$ $1.726 \mathrm{~mm}^{-1}, \quad F(000)=492, \quad T=295 \mathrm{~K}, \quad R=0.0438$ for 1398 unique reflections with $I>3 \sigma(I)$. The molecule displays square-planar $\mathrm{N}_{2} \mathrm{O}_{2}$ coordination about $\mathrm{Ni}^{\mathrm{II}}$. Ligand phenyl rings are stacked 3.426 (2) \AA apart.

Introduction. 1-Alkyl(aryl)-3-(X-phenyltriazene) 1oxides \{henceforth abbreviated as $\mathrm{H}[R(\mathrm{Ar}) ; X]\}$ belong to a wide class of ligands forming 'inorganic' (carbon-free) chelate rings (Haiduc \& SilaghiDumitrescu, 1986). To date, three molecular structures of the free ligands, i.e. $\mathrm{H}\left[\mathrm{Me} ; 4-\mathrm{CONH}_{2}\right]$ (Kuroda \& Wilman, 1985), $\mathrm{H}[\varphi ; 2-\mathrm{OH}]$ (Samanta,

De, Sarkar, Saha \& Talapatra, 1985) and $\mathrm{H}[\varphi ; 2-$ $\left.\mathrm{CO}_{2} \mathrm{H}\right]$ (Sarkar, Khalil, Saha \& Talapatra, 1983) have been reported. Of the metal complexes of these ligands the structures of $\operatorname{Pd}[\varphi ; \mathrm{H}]_{2}$ (Meyer, 1965), $\mathrm{Co}[\mathrm{Me} ; 2-\mathrm{Cl}]_{2}, \mathrm{Ni}[\mathrm{Me} ; 2-\mathrm{Cl}]_{2}$ (Dwivedi \& Srivastava, 1971, 1976), $\mathrm{Ni}[\mathrm{Me} ; 2-\mathrm{Cl}, 6-\mathrm{Me}]_{2}$, $\mathrm{Ni}[\mathrm{Me} ; 2-\mathrm{Cl}, 6-\mathrm{Me}]_{2}-$ $\mathrm{C}_{6} \mathrm{H}_{6}$ (Rajasekharan, Varughese \& Manoharan, 1979) and $\mathrm{Ru}[\mathrm{Et} ; 4-\mathrm{Me}]_{2} \mathrm{Cl}_{2}$ (Bhattacharya, Chakravorty, Cotton, Mukherjee \& Schwotzer, 1984) are known. In addition, the structure of a dinuclear copper complex of the 3, ${ }^{\prime}$-dimethoxy-4,4'-benzidine based ligand has been published (Hodgson, 1983).

Recently, we reported the formation of both highspin and low-spin complexes of $\mathrm{Co}^{\text {II }}$, together with the molecular structure of the low-spin, squareplanar $\mathrm{Co}[\mathrm{Et} ; \mathrm{H}]_{2}$ (Rudolf, Wolny, Ciunik \& Chmielewski, 1988). In contrast the Ni^{11} complexes

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, H -atom positional and thermal parameters and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54318 (36 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

